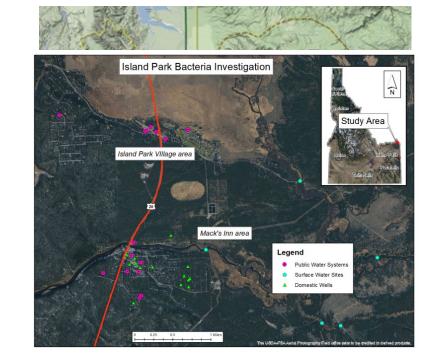


Island Park Bacteria Investigation 2020 – 2021; Distinguishing Sources and Drivers

Flint Hall, IDEQ-IFRO Henry's Fork Watershed Council October 10th, 2022



Background:

- Heavy use during summer and winter recreation seasons
- Lots of lovin'
 - vacation homes, VRBO
 - RV, camping
 - Outdoor recreation
 - Yellowstone
- Shallow soils and alluvium, fractured rock (high GW vulnerability)
- Historical seasonal bacteria issues
 - Some areas are on PWS, community wastewater systems (1982)
- Shigella outbreak 1995 (https://www.cdc.gov/mmwr/preview/mmwrhtml/00040669.htm)
 - Island Park Village area suspected to correlate to unregulated pit toilets used by construction laborers
 - Issues with the wastewater system
- 2020 increased detections, PWS and domestic wells
 - DEQ DW, EIPHD, County prompted investigation

Distinguishing Anthropogenic sources:

Identifying N Inputs:

- Natural
- Ambient/baseline
- Anthropogenic

Characterize Distinguishing Factors:

- Defining groups/sources
- Modifying processes

Process Flow:

- Know the context
 - Natural, ambient, anthropogenic sources
- Sample
 - Bacterial, Major ions, Nutrients, COCs, Tracers, isotopes
- Characterize Factors
 - (Multivariate analysis PCA, HCA, K-Means)
 - What distinguishes different sources?
 - What controls timing and occurrence
 - What processes modify the signature
- Relate to sources
 - Land use conditions, practices

Relate to Context:

- Subsurface
- Land use/BMP Context

Forensic N Monitoring Analytes:

Major ion Chemistry, Nutrients, COCs

Field parameters – temp, SpC, pH, DO Ca, Mg, Na, K, Cl, SO₄, Total Alkalinity NO₂+NO₃, NH₄
Bacteria (T. coliform, *E*. Coli)

Stable isotopes, Tracers

¹⁵N, ¹⁵N_{NO3}, ¹⁸O_{NO3}, ¹⁸O_{H2O}, ²H_{H2O} B, Br

Questions, Sites and sampling:

Questions:

What are the primary sources/drivers?

 Surface water, Sanitary waste leaks/septics, WLAP?

What are the drivers for seasonality and locations?

Snowmelt?

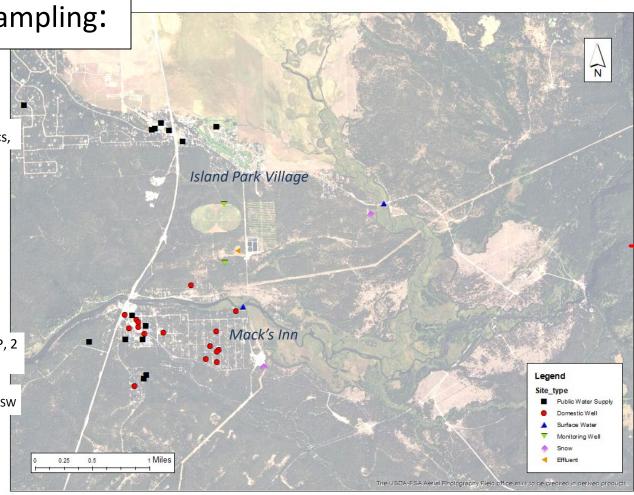
What factors control the sites impacted?

Proximity to waste-water, WLAP?

Sites sampled:

Fall '20 – 16 PWS, 15 domestic, 5 SW sites

- Bacteria, General chemistry, ¹⁸O/²H
- PCPP with ISU


Spring '21 – 15 PWS, 16 domestic, 2 SW, 2 WLAP, 2 snow, 1 winter effluent

- Bacteria, General chemistry, ¹⁸O/²H
- B, Br, ¹⁵N/¹⁸O-nitrate, total ¹⁵N
- SpC, temp loggers in monitoring wells and SW

Field parameter monitoring

Selected PWS

Characterizing factors – Multivariate analysis

The inputs that include the COC include variations/combinations of ambient conditions

Allows a quantitative correlation with multiple factors (focus – 2021 results)

Characterize Factors

PCA – end members, sources of variability - optimized analytes

HCA – similar sites, similar conditions/land uses, similar processes

K-means – identify factors that distinguish groups, source/process context.

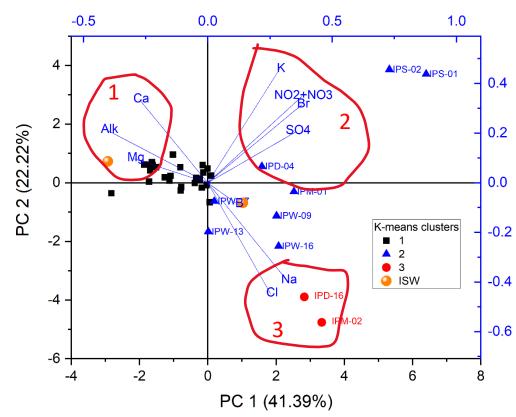
<u>Data utilized</u> (optimized dataset)

Proportional milliequilivents for major ions: (Ca, Mg, Na, K, total alkalinity (as $CaCO_3$), Cl, SO_4), trace elements (B, Br) and $NO_2 + NO_3$.

Not detects replaced by $\frac{1}{2}$ the reporting level -- NO_2 + NO_3 (5), Br (3), B (1)

Interpretive plots – in terms of K-means cluster assignments

- Pipers mixing of sources
- CI/Br (with context for bacteria) CI source distinction, atmospheric/soil/waste
- LMWL timing of water, impacts from winter/summer precipitation/evaporation
- 15N, ¹⁸O_{NO3} nitrogen sources and processes

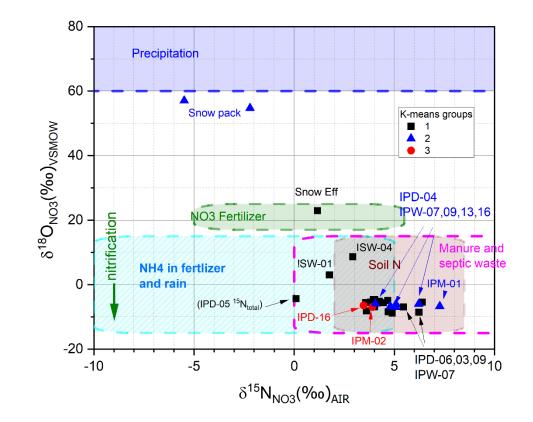


Characterizing factors: Variability/end members (PCA)

- 2021 sampling 36 GW sites, 2 SW,
 2 snow and 1 Effluent
- Three or Four significant components:
 - (1), NO₂+ NO₃, Br, SO₄, Na, (2) K,NO₂+ NO₃,Ca, Br (3) B, Ca, Cl, Mg (4) B, Mg

Most group 2 sites returned bacteria detections

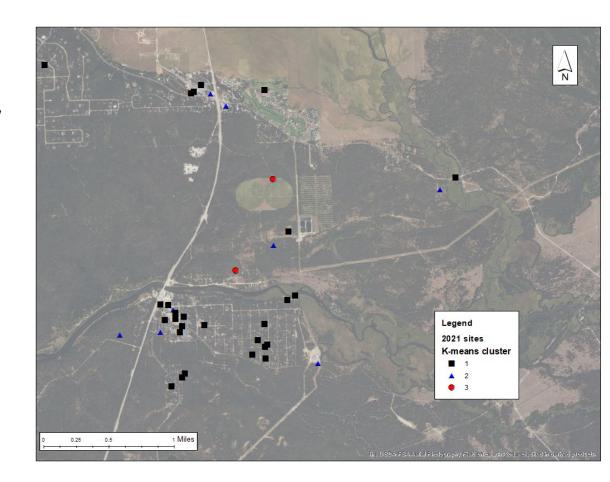
		Coefficients			
	Ca	-0.2741	0.3339	0.3452	-0.4659
	Mg	-0.2961	0.0967	0.3032	0.3331
	Na	0.3202	-0.3955	-0.4121	0.1876
	K	0.2876	0.4564	-0.1044	0.2161
	Cl	0.2517	-0.4479	0.3394	-0.3516
	SO ₄	0.3565	0.2063	0.2058	0.1263
	HCO ₃	-0.4019	0.2104	-0.3817	0.2249
AR	$NO_2 + NO_3$	0.3781	0.3477	0.0550	-0.0920
	В	0.1203	-0.0881	0.5329	0.6080
	Br	0.3775	0.3137	-0.1344	-0.1480



Distinctions (K-Means)

K-means outcomes:

- K means Piper cluster 2 increase in Cl, cluster 3, increased Na
- Cl/Br cluster 2 plot mostly in the waste range, cluster 3 similar
- Most TC,EC detections are cluster
 2 and waste range
- IPD-16 could be explained by mix of effluent and SW1
- Dual Isotope plot $(\delta^{15}N/^{18}O_{NO3})$ indicates enriched $\delta^{15}N$ for some of these impacted sites (cluster 2) supporting waste influence

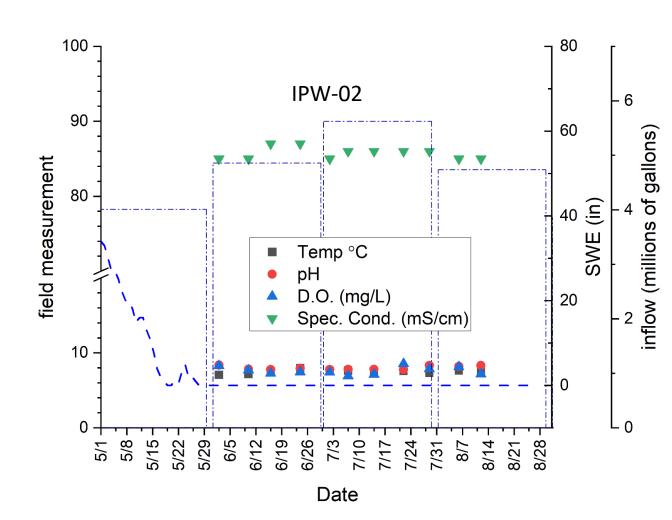

Natural groupings (HCA)

2021 sampling HCA outcomes:

- Groups A ISW-01 and IPS-03 (snow eff), Group B – ISW-04, Group C – snow sites, Group D – IPM-02 (land app site?)
- TC detections across all groups, E.
 Coli groups B,C

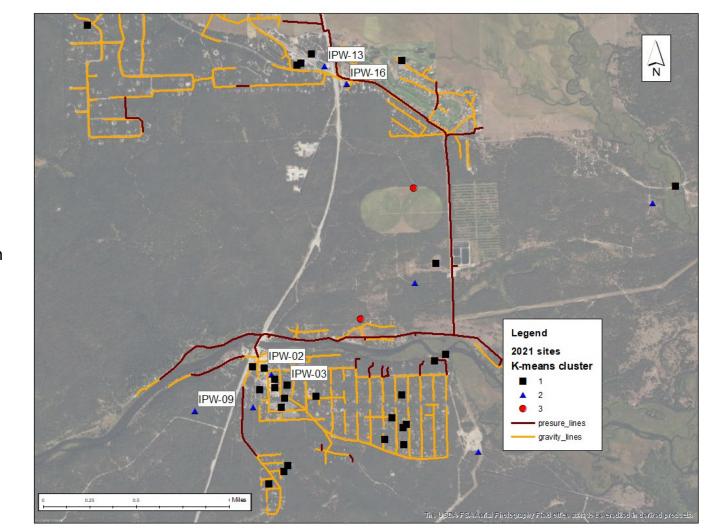
Spatial plot with K-means

- Group C, cluster 2 share common factors
- Group D, Cluster 3 are distinct



Field Parameters:

- 6/2-8/19
- TC, EC detections
- IPW-16 7/6/21
- IPW-13 5/26/21
- IPW-09 9/7/21
- IPW-03-8/26/21
- IPW-02– no detections



Field Parameters:

• 6/2-8/19

Correlations to drivers

- IPW-16, 13 close to WW lines
- IPW-09
- IPW-03 early season– melt related?
- IPW-02 no trend

Island Park Bacteria Investigation

Conclusions:

- Wastewater is a contributing factor from possible sewer/septics
- Melting snows are likely a factor in driving existing bacteria to ground water
- Surface water from Henry's Lake outlet and the Henry's Fork in the Mack's Inn area is less likely to be a significant influence on bacteria occurrence.
- WLAP does not appear to be a contributing source of bacteria to ground water.
- Impacted sites more frequently included older wells completed to older and less-stringent construction standards.
- Some impacted sites were close to sanitary sewer collection lines and showed impacts correlating to peak flow in the wastewater system, suggesting possible leaks in the sewer collection system.

Island Park Bacteria Investigation

Proposed Paths Forward:

PWS operators

- Talk to DEQ about Source Water Protection and options.
 - new well that seals out shallow sources of contamination,
 - consolidating with another PWS

Domestic users

- Contact DEQ, EIPHD, or IDWR about options.
 - onsite treatment, new well-construction, or connection to a public water supply.
 - Follow recommendations for regular monitoring.

County-city Jurisdictions

- Investigate potential contamination sources
 - identify leaks and active septic systems work to connect to the central wastewater
- Develop and enforce protective ordinances:
 - New construction connecting to community water/sewer
 - Increase monitoring requirements for rental properties.

