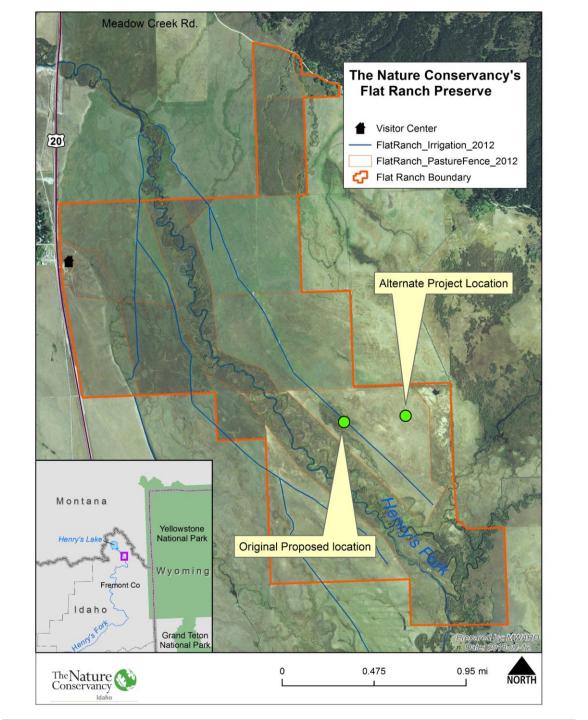

Flat Ranch Preserve Wetland Enhancement Project

Flat Ranch Preserve

- Livestock Production
- Wildlife and Fisheries Habitat
- Public Access and Recreation
- Hunting
- Fishing



Project Sponsors

- Idaho Department of Fish and Game
- Intermountain West Joint Venture
- US Fish and Wildlife Service
- Bureau of Land Management
- The Trumpeter Swan Society
- Northern Rockies Conservation Cooperative

Project Benefits

- Restore a historic nest site for trumpeter swans.
- Improve breeding and foraging habitat for a wide variety of water birds, shore birds.
- Provide Improved recreational opportunities, through enhanced waterfowl hunting and bird watching opportunities.
- Improve stock water options for cattle operation, especially during late season.

Why Swans?

- Regional and State Conservation Priority
- Listed in Idaho as a Species of Greatest Conservation Need
- Low breeding pair success in the state

Why swans cont.

- Idaho is the only state that has not met its breeding objectives.
- Breeding objectives in the upper Henrys Fork is 8 pairs.
- Two broods produced in Island Park in 2017.
- Statewide only nine pairs produced broods in 2017.

Feasibility Study

- 2016 and 2017 Initial site 2016-2017 Alternative site 2017
- Topography
 GPS survey
 Lidar
- Soils

 Pits (≈5 ft)

 Permeability tests
- Hydrology
 Shallow wells (≈5 ft)
 Biweekly monitoring May-Oct.

Existing Land Use and Vegetation

- Flood-irrigated pasture
- Mosaic of sub-irrigated meadow and sedge wetlands

Design Constraints

- Flat Topography
- No natural depressions

Design constraints cont.

Groundwater depth and fluctuation

0.5-2 ft early and late season

1.5-4 ft mid growing season

Design constraints cont.

Surface soil quality and thickness

Clay/silt-rich surface layer

<1 to >3 ft thick

Ponds water from rain, snowmelt and flood irrigation

Design constraints cont.

Subsurface gravels
 Coarse gravel with
 some sand and silt
 Highly permeable
 Shallow alluvial aquifer

Design Concept

Broad Shallow Impoundment 3.5 ft maximum depth

Flood on grade

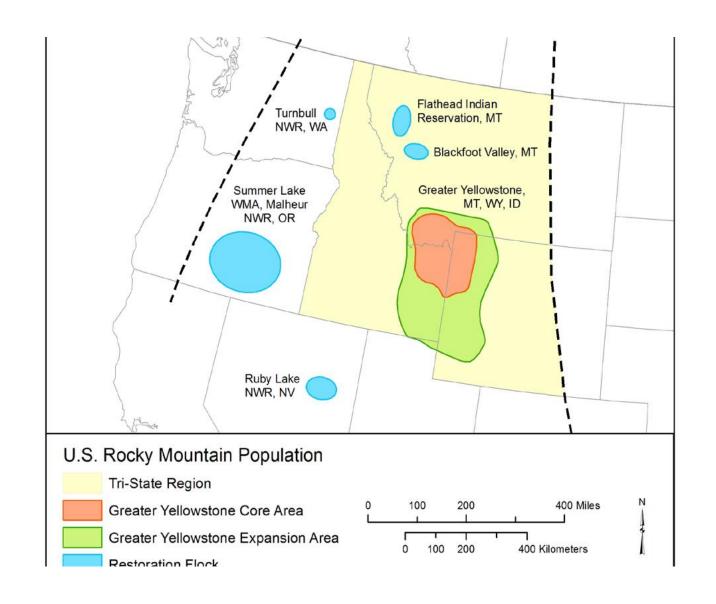
Water ponded on top of existing ground surface

Dike with water control structure
1-4 ft high
Like narrow road prism

Small borrow pits
Outside flooded footprint
Revegetate as habitat

CHURCH CONTRACTOR OF THE CONTR

~ 2000 ft.


Wetland Water Budget Estimate

- 10-20 acres
- Flooded May-October
- Evaporation ≈ 1 ft (10-21 ac-ft)
- Seepage ≈ 1 ft (10-21 ac-ft)
- Total input ≈ 21-42 ac-ft
- Equivalent to input of
 ≈ 0.07-0.14 cfs
- Does not include ditch losses

